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The z-Nitrogen of D2 Histidine 189 is the Hydrogen Chart 1
Bond Donor to the Tyrosine Radical Yp* of
Photosystem I
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Figure 1. Mims ESE-ENDOR spectra of ¥ in Synechocysti6803:

(a) globally**N-labeled wild type; (byz- andz-**N-labeled histidine
wild type; (c)z-**N-labeled histidine; (d) globall{’N-labeled H189Q
mutant; (e) globally**N-labeled wild type minusN-labeled H189Q
mutant spectrum (trace (a) to trace (d)). Mims ESE-ENDOR experi-
mental parameters: microwave frequency 10.228 GHz; magnetic field
3646 G; temperature 11 K;= 476 ns; rf pulse width 4@s; microwave
pulse widths 15 ns. All data were collected at a field position 4 G
lower than theg = 2.0023 field position to further eliminate any possible
contributions to the ESE-ENDOR spectrum from any trace amounts
of photoaccumulated Chliradical! Spectra were also collected for
the globally*>N-labeled wild type sample (data not shown) at a field
position 10 G lower than thg = 2.0023 field position, with identical
results to trace (a). The Mims ESE-ENDOR effect is negative; the

0.5

amplitude of the stimulated echo is reduced by the coupled nuclear
spin transitions. Each trace has been normalized at the off resonanc

frequency of 2.5 MHz, and then inverted to present positive ENDOR
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(trace (c)) reveal néN transitions, demonstrating that it is the
7 histidine nitrogen that is the hydrogen bond donor.

The isotropic 1.17 and 1.97 MHz peaks are absent in the
ENDOR spectrum of the globallN-labeled His189GIn mutant
(trace (d)), indicating that it is His189 that provides the coupled
T-nitrogen. However, the two remaining broad peaks at 1.28
and 1.86 MHz align with the inner shoulders of the complex
ENDOR peaks of the globally?N-labeled wild type sample.
The difference of the ENDOR spectra of the globafy-labeled
wild type and H189Q mutant samples (trace (e)) is virtually
identical to that of thé®N-labeled histidine wild type spectrum.
This allows us to conclude that the mutagenesis did not induce
any secondary structural changes aroumgd ahd that there is
a second class dfN nuclei coupled to ¥°. This second class
of 1N nuclei is unlikely to belong to another hydrogen bond
donor, since'H and?H ESE-ENDOR reveals only one class
of hydrogen-bonded proton/deuteron, and reéehtESEEM
experiments have demonstrated that a single deuteron with the
ENDOR-derived hyperfine and quadrupolar couplings accounts
for all the observed ESE envelope modulat®and since the
proton ENDOR and high-field EPR of Yp* in the D2-
His189GIn mutant reveal no remaining hydrogen bonds. We
are investigating the possibility that this second class of nitrogens
corresponds to the peptide nitrogen of the tyrosine.

In addition to demonstrating that thenitrogen of D2
histidine 189 is the hydrogen bond donor tg*Ythese ESE-
ENDOR results explicitly demonstrate that, inma-radical
molecule such as, hydrogen bonding can provide significant
unpaired spin density onto a nitrogen hydrogen bond donor to
an oxygen group on the radical. Such coupling is particularly
notable given the ESEEM spectra reported for the Quinone
anion radicals in PSIT and the bacterial reaction centéyhich
have been interpreted to favor relatively isotropic couplings to
peptide and/or histidine nitrogen nuclei.
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